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Abstract—Deep learning-based semantic communications
(DLSC) replace the physical blocks in traditional communication
systems as end-to-end neural networks. DLSC significantly boost
communication efficiency by only transmitting the meaning of
data, showing great potentials for applications like automatic
driving, digital twin and smart health. However, DLSC are fragile
to black-box adversarial attacks due to the openness of wireless
channel and sensitivities of neural models. To this end, this
paper proposes SemBAT, a novel approach for crafting physical
layer black-box adversarial attacks for semantic communication
systems. The key ingredients of our method include the training
of surrogate encoder and generation of adversarial perturbations.
Specifically, we train our surrogate encoder by directly estimating
the gradients based on Jacobian-matrixs, and then generate the
adversarial perturbations by the particle swarm optimizations.
Extensive experiments on a public benchmark show the effec-
tiveness of our proposed SemBAT. We observe that our SemBAT
with black-box adversaries can sharply decrease the classification
accuracy of the semantic communication system from 78.4% to
11.6%. Meanwhile, such attacks are also imperceptible in terms
of image quality metrics measured by the Structural similarity
index measure (SSIM) and Peak Signal to Noise Ratio(PSNR).

Index Terms—Semantic communications, Black-box attacks,
Particle swarm optimizations

I. INTRODUCTION

Shannon and Weaver [1] discussed that communication can
be divided into three levels: transmission of symbols; semantic
exchange of transmitted symbols; the impact of semantic
information exchange. When people conduct related research
on communication systems based on Shannon’s information
theory, they mainly focus on issues at the grammatical level,
and only aim to transmit bit data reliably and efficiently. Today,
the problems related to the reliability and effectiveness of
communication have been solved. With the increasingly close
integration of artificial intelligence technology and commu-
nication technology, the problem of semantic level that was
temporarily put on hold in the past has re-emphasized. Unlike
traditional communication, deep-learning semantic communi-
cation systems (DLSC) [2]-[5] aim to transmit information
related to the transmission target. Although promising, DLSC
are fragile to adversarial attacks [6], [7] due to the openness
of wireless channel and sensitivities of neural models.
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Adversarial attacks [6] are mainly divided into white-box
attacks and black-box attacks. For the former, the attacker
knows all the information and parameters in the model, gen-
erates adversarial samples based on the gradient of the given
model, and attacks the network. For the later black-box attack,
the attacker does not have the knowledge of the parameters
and structure information of the model. The attacker can only
defeat the systems through the input and output of the model
with adversarial samples. Hence, it is much more challenging
to craft adversaries for a neural network system under the
black-box setting. However, the underlying ideas of the two
are consistent, and the gradient information is used to generate
adversarial samples, so as to achieve the purpose of deceiving
the network model. Taking advantage of this feature, we can
train a surrogate model that can mimic the output of the
target model, and then we are able to use such a surrogate
encoder as a transmitter to communicate with the receiver
in the semantic communication system. Traditional black-box
attacks can use query-based methods to add noise to the
input image directly by using various optimization algorithms
to query the output to find adversarial samples.The other is
training a surrogate model with a decision boundary similar
to the original model and performing a white-box attack on the
surrogate model, namely calculating the gradient information
to add noise directly. Obviously, the first method requires a
lot of queries to achieve the goal. Even if the optimization
algorithm is efficient, there is an inevitable problem of low
query efficiency. Inefficient queries can easily lead to the
problem of being easily perceived as an attack and it is
not concealed enough.Considering the openness of wireless
channels in semantic communication system, we add noise to
the channels. It is impossible to transmit information directly
on the original transmitter, so we use the surrogate model to
simulate transmitting and conduct a query-based black box
attack on the channel by cooperating with output information,
which can enhance the query efficiency greatly.

In this paper, we propose SemBAT, a novel method for
generating physical layer black-box adversarial attacks for
deep learning-based semantic communication systems. We
train our surrogate encoder with gradient estimation through
Jacobian-based Dataset Augmentation [8], and then we use the
contextualized representations and labels from the receiver to



optimize a noise generation model through the Particle Swarm
Optimization(PSO) algorithm [9]. We add noise disturbance
in the process of passing the representations to the wireless
channel, so that the accuracy of the classifier of the semantic
communication model can be improved. As the number of
training iterations increases, the classification accuracy of the
model can be decreased to 11.6%. Meanwhile, we observe
that such attacks are also imperceptible, as the image quality
metrics measured by the Structural similarity index measure
(SSIM) and Peak Signal to Noise Ratio(PSNR) are slightly
dropped.
Specifically, we summarize our contributions as follows:

e We introduce SemBAT, a novel method that aims to
generate physical layer black-box adversarial attacks for
semantic communication systems.

o We train our surrogate encoder with gradient estimation
and data augmentation based on Jacobian matrix, properly
tackling parameter learning under the black-box scenario.
We craft adversarial perturbations with the particle opti-
mization algorithm that is adapted to our scenario.

« We conduct experiments on a public dataset to show the
effectiveness of our SemBAT. Experimental results show
that our black-box attacks can significantly decrease the
classification accuracy, while slightly reduce the image
qualities.

II. MODEL

In this section, we first introduce a semantic communica-
tion system, and then present our proposed SemBAT, which
includes two key components surrogate encoder and noise
generator. Figure 1 shows the architecture of the system.

A. Semantic Communication System

We select JSCC-OFDM semantic communication system
[10] as our backbone and also introduce a classifier to obtain
the output label. The system uses joint source channel coding
(JSCC) for wireless image transmission over multipath fading
channels. As shown in Figure 3, the semantic encoder directly
maps the source images to complex-valued baseband samples
for OFDM transmission with CSI feedback which is shown
in Figure 2. We apply OFDM as the modulation technique
to resist interference from multipath fading channels with
frequency domain equalization for this JSCC framework. We
concatenate deep neural networks with OFDM processing
blocks by feeding the neural network encoded image as
frequency domain OFDM baseband symbols. On the decoder
side, the interference due to irrational characteristics of the
channel is addressed by channel estimation, equalization and
additional subnets. The previous semantic communication
system generally ends up with image reconstruction. We intro-
duce classifiers for joint training : image transmission to the
opposite end generally has downstream tasks and classification
is the most common scene. Compared with the separated
communication and classification models, the semantic com-
munication system with classifier has more advantages in
speed and model size. Instead of naively treating a neural

network as a black box, the neural network imposes a guided
structure to introduce the traditional communication analysis
model and signal processing module designed on both the
encoder and decoder sides. We simply use convolutional neural
networks (CNNs) as our surrogate encoder. Next, we show
how we train such a surrogate encoder.

B. Surrogate Encoder

We train our surrogate encoder with gradient estimation
[11] to facilitate an attacker for the generation of adversarial
examples. The encoder can also ensure the privacy of data
acquisition, as we don’t have any knowledge of the original en-
coder of the semantic communication systems. The surrogate
encoder generates the contextualized semantic information and
then sends them to the receiver. The training of our proposed
surrogate encoder consists of three steps:

1) In the first step, we design the structure of our surrogate
encoder, which is shown in Figure 4. In this paper, we
use full convolution CNNs. The convolution structure is
suitable for the extraction and compression of semantic
information. We make the output of the surrogate model
has the same dimension as the high-dimensional vector
encoded by the original encoder, to ensure it can have
a similar decision boundary with the target model when
connecting with the decoder.

2) In the second step, we simplify the process of obtaining
the dataset during the experiment. The dataset is divided
into two parts. We train the surrogate encoder with the
data subset of 10,000 images. We use a data subset of
1000 images to augment the data with data augmenta-
tion, such as flips, translations, rotations and other minor
changes, here we can use
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Z is an image in S, Q(f) is the image label output by

—

the target model, Jr[O(Z)] is the Jacobian-Matrix cor-
responding to this label, sgn(Jr[O(Z)]) is the symbol
of only the Jacobian matrix, namely the element value
in the matrix becomes a regular 1, otherwise it becomes
-1. It can be seen that the new S, is composed of the
original S, and the enhanced {Z + usgn(Jr[O(Z)])},
and the size becomes twice the original. This step can
be combined with the third step.

3) In the third step, we adapt the zeroth order optimization
[12] method for the gradient estimation. We estimate
the parameter update on the basis of two samplings
by differences, without relying on the first derivative
information for gradient computation. Given an image
xg, let x denote the adversarial example of xq, x( class

label points to the misclassification. We find = by solving

minimizey ||z — zo||3 4 ¢ * f(x)
subject to x € [0, 1]?

|z — x0]|3 denotes the Euclidean norm of = — zq ,
¢ > 0 is a regularization parameter. Hence x — xg
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improve the error rate because of the increased error exponent using dynamic
power allocation algorithms and adaptive modulation.

is the adversarial image perturbation of z relative to
Zo. ¢ * f(x) is the loss function that reflects the level
of unsuccessful adversarial attacks. The output of our
neural network F'(x) is determined by the softmax
function:

__ exp([Z(@)lk)
[F(a)lk = =x
> im1 exp([Z(x)]:)
Z(z) € RX is the logit layer representation in the
neural network for x such that [Z(z)]; represents the
predicted probability that x belongs to class k, We select
untargeted attack, so we use the loss function:

f(z) = max{log[F(z)]s, — gr;gflog[F(w)]u —K}

ke(l,..,K)

to is the original class label for z, and n;éaxlog[ (x)];

represents the most probable predicted class other than
to. We use the s (ymmetrlc difference quotient to estimate
the gradlent

of(@) _ fla+he;) —
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We set h=0.0001 and ¢; is a standard basis vector. In
this step, we train the surrogate encoder, and keep the
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Fig. 3. Encoder structure

parameters and structure of the decoder unchanged in

Figure 5.

l

Fig. 4. Surrogate encoder structure

C. Noise Generator

As shown in Figure 1, we add adversarial noise to signals
in the physical layer, and such a way of black-box adversarial
attacks is quite different from the ones that inject attacks
from the input. Our surrogate encoder is able to generate
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contextualized representations, and then we can get the labels
from the classifier at the receiver side. To craft more practical
black-box attacks, we add two constraints for the noise, i.e.,
SSIM [13] should be greater than a threshold and ACC
should be less than a threshold. For example, we set the two
thresholds as 80% 15% respectively. We optimize our noise
generator based on our proposed particle swarm optimization
algorithm.

We generate a random noise € as a particle, w is the
momentum factor, v; is the velocity of particles, rand() is
a random number between O and 1, z; is the current position
of the particle, c¢; and ¢y is learning rate, pbest; is the best
position searched by one particle, gbest; is the best position
searched by the swarm so far

v; = wxv;+cyxrand()x(pbest; —x;)+coxrand()x(gbest; —x;)
T =x; +U;

Every particle is iteratively updated by pbest and gbest.
By doing so in Alg 1, we are able to obtain adversarial
perturbations to the signals in wireless channel.

III. EXPERIMENT

We conduct experiments on CIFAR10, one of the most pop-
ular datasets that is used for image classifications. CIFAR10
consists of 60,000 32x32-pixel images in 10 classes, with
6,000 images per class. We use 50,000 images to train the
targeting semantic communication system and the rest of the
10,000 ones are used to train the surrogate encoder. We employ
several metrics to check the performance of our method,
namely Peak Signal to Noise Ratio(PSNR) [14], structural
similarity index measure (SSIM), average power ratio(PAPR)
and accuracy of classification(ACC).

A. Implementation details

We use Pytorch to implement the neural network blocks and
the OFDM communication model. We utilize Adam [15] to

Algorithm 1: Training the noise generate

Input: input image x;
Output label of classifier y
Output: A high dimensional vector noise

Initialize noise € ;
Sample batch of dataset 7;;
while ACC;15% SSIM;80% do
latent=surrogate_encoder(x);
latent +=noise;
foreach 7; in dataset do
e=PSO(latent,y);
update(y)
Compute ACC;
| Update € ;

train our surrogate encoder, generator, and reconstruction net
from the encoder, and retain the decoder structure for end-
to-end parameter migration from the original communication
system. The initial learning rates of all networks are set as
0.0005, they are gradually decreased to zero as the number
of iterations increases. Our model is trained by one NVIDIA
GeForce RTX3090 GPU. Each source image x is transmitted
in a single OFDM packet that contains [V, pilot symbols and
N, information symbols. We select SNR =10dB , N, = 1 and
N; = 6. The experiments show that the SSIM is above 0.9
and the PSNR is above 28 under this condition, which can
ensure the reliability and effectiveness of communication.

B. Performance of surrogate encoder

TABLE I
TRAINING EFFECT OF SURROGATE MODEL

Original Encoder | Surrogate Encoder
PSNR 25.23 24.27
SSIM 0.85 0.83
PAPR 11.58 11.91
ACC 0.83 0.78

Table I reports the performance comparisons between the
surrogate encoder and the original encoder. We observe that
our surrogate encoder, which is trained on a small part of
dataset with gradient estimation, yields very similar perfor-
mance to the original model in terms of PSNR, SSIM and
PAPR. Hence, we can use this surrogate encoder to mimic
the original encoder to facilitate the generation of black-box
adversarial perturbations.

C. Black-box Adversarial Attacks

Table II shows the results under different iterations of
physical layer black-box adversarial attacks. Through the ex-
perimental results, we can find that as the number of iterations
increases, the attack effect of the noise generator gradually
increases. We observed the accuracy of the classifier decreases
to 11.6% after 50 iterations, while PSNR, PAPR and SSIM



TABLE II
EFFECT OF NOISE GENERATOR WITH DIFFERENT ITERATIONS

No noise | 10 iterations | 30 iterations | 50 iterations
PSNR 24.27 23.28 24.22 24.93
SSIM 0.83 0.81 0.82 0.81
PAPR 11.91 10.94 11.32 10.30
ACC 0.78 0.72 0.47 0.11

are slightly dropped. The results indicate that our black-box
attacks are destructive and imperceptible.

IV. CONCLUSION

In this paper, we present SemBAT, a novel method that
aims to generate physical layer black-box adversarial attacks
for semantic communication systems. We train our surrogate
encoder with gradient estimation and then optimize the noise
generator to craft the adversarial perturbations. Experimental
results show that our SemBAT is effective to significantly
decrease the classification accuracy. Meanwhile, the attacks
are imperceptible for humans as the image quality is slightly
dropped. In the future, we will conduct more experiments to
generate various physical layer black-box adversarial attacks,
and evaluate their performance on more semantic communi-
cation systems.
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